One Day Foundry – For Aluminum Casting

As a challenge to myself I decided to make a very simple foundry setup for melting and casting aluminum.  I have a larger more involved equipment but I thought it would be interesting to revisit some of the methods I used for my first castings.  I also wanted to explore some new ideas I had for setting up a simple aluminum foundry.

If you have ever thought that you might like to try doing some aluminum casting “One Day” my “One Day Foundry” web page and the accompanying video may be of some help.  The steps I used to accomplish the task were intended to get to the end result quickly with few tools.  There are many ways to accomplish the same end result, I present only one.

I carefully selected my supplies and hand tools before I started and took the picture shown below.  After I had the necessary items I did all of the preparation work using only hand tools and an electric drill.  When I started casting aluminum I did not have much more than those simple tools in my possession.  Below is a picture of the tools and equipment I started with.  The only items that I did not have laying around the house were the two 8 foot 2×2 boards, fire clay and fine sand.  Wood and sand were obtained at a big box home improvement store.  The fire clay is a little more difficult.  I went to Continental Clay in Minneapolis and purchased the clay (Hawthorn-50 mesh fire clay).  They do sell by mail order but finding a local source is probably worth the trouble for most people.

One Day Foundry

I was able to complete the project in less than one day.  I captured the build in the video embedded  below.  More details, including tools/parts list, can be found on the project page: One Day Foundry project page.

And the resulting casting.

OLYMPUS DIGITAL CAMERA

 

High Speed Spindle (Router) Mount for a CNC Mill

I find myself doing CNC work on wood about half of the time so I thought it would be nice to have a high speed spindle.  I decided to mount my existing router to my CNC milling machine.  This is the same router I had previously mounted to my Poor Man’s Milling Machine before I bought the CNC machine (a Grizzly G0463 with the CNCfusion conversion kit).  After doing a little bit of Internet research I settled in on attaching a mount to the quill of my CNC machine.  The best source I found of similar mounts is found on this CNC Cookbook page: High Speed Secondary Spindle.

First I started by casting the rough shape in aluminum.  Below is a picture of the wood pattern that I made and the aluminum part in the as cast condition (after the casting sprue and riser were removed).

OLYMPUS DIGITAL CAMERA

After I had the cast part I bored out the two holes to closely fit the quill on the mill and the outer diameter of the router motor I planned to use.  Then I cut slots in the ends and a clearance scallop for the existing gear rack on one side of the router body.  Next I added fastener holes that are clearance fit on one side of the slot and threaded on the other side of the slot.  Fasteners tighten the mount onto the quill and router body to hold them securely.

OLYMPUS DIGITAL CAMERA

Finally the router motor is installed in the mount and the mount is installed on the milling machine quill.  This configuration added a lot of mass to the head stock so I also added a gas spring (not shown) to compensate for the added mass.

OLYMPUS DIGITAL CAMERA

With the addition of the router motor I am able to cut wood at a much faster rate and get a better finish.  Below is a picture of a couple of plaques that I made for my brother with the new high speed spindle.  (The picture was taken before the edges of the plaques were finished).

OLYMPUS DIGITAL CAMERA

The plaques were made to commemorate PHD Baseball’s Worlds Longest Baseball Game that took place in August 2014.

 

 

3D Printed Lithophanes

Ever since I first saw a lithophane in a YouTube video I have thought they were really cool.  I have made cylindrical lithophanes previously with my CNC machine.  When I bought my 3D printer I thought I would give printing lithophanes a shot.  I tried working lithophanes into Christmas ornaments with marginal success (See some of the ornaments here).  After a little refining I printed some pictures on a cylinder and a night light cover.  I removed the original night light cover and replaced it with a 3D printed version.  The nightlight worked out well since it was a purposeful back light for the lithophane.  Below are some pictures of the results.  The cylinder is back lit by a battery operated tea light candle (the pictures are the front and back of the same cylinder).  I spent a bunch of time making the STL file only to find that there are utilities that other people have made available for making cylindrical lithophanes.  Here is a link to one I found on Thingiverse: Customizable Cylinder Lithophane Lamp.

Proposed Projects for the 2015 Minneapolis/St. Paul Mini Maker Faire

The call for makers for the first Minneapolis/St. Paul Mini Maker Faire is now open.  I thought I would throw my hat into the ring to present a few projects. I picked out a few projects for which I will show some of the intermediate steps.  The projects I have chosen have built upon each other over the years.  The projects presented below are the projects I proposed in my Maker Faire call for makers application I will edit as needed as the mini maker faire approaches.

Injection Molding Machine

My injection molding machine was made using plans from the book Plastic Injection Molding Attachment for the Drill Press by Vince Gingery. This book features a small injection molding machine that relies on an external mechanism to push the ram.  Generally the external mechanism is a drill press.  For my machine I have fitted the molding machine on an arbor press. The temperature control is accomplished using a purchased PID controller, thermocouple and cartridge heaters.  The use of an external mechanism for load application and purchased components for the thermal management makes the remaining parts of the injection molding machine a simple piston with the necessary features to interface with the purchased components.  I plan to have the injection molding machine producing small parts during the Mini Maker Faire. More information on my injection molding machine and molds is available on my Home Plastic Injection Molding web page.  As shown in this YouTube Video the injection molding machine was in part made using my Gingery Lathe which is another project I plan to display.

Injection_molding

Gingery Lathe

A Gingery Lathe is a lathe made based on the book The Metal Lathe by David Gingery.  Gingery Lathes are often started by makers that are trying their hand at aluminum casting.  In the past very few working lathes could be found on the Internet. The number or working lathes seems to be increasing.  My lathe is by no means perfect but it is an example of a functioning lathe that I continue to use.  I plan to display wood patterns I used in the process of casting the lathe parts out of aluminum.  My aluminum foundry which I used to create many of the lathe parts is another project I plan to display.

gingery_lathe

Aluminum Foundry

Casting aluminum opens a world of possibilities for makers and hobbyists.  Aluminum casting can produce very strong aluminum components using a pattern made from wood or other easy to work with material.  In addition the aluminum used for the castings can come from many sources including old aluminum frying pans and broken lawn mower engines.  Since the material comes at little or no cost I even use cast billets from my foundry for making the molds used with my injection molding machine mentioned above.  My foundry setup is based primarily on information from BackyardMetalcasting.com but once again Gingery publishing also has a great resource in the form of the book The Charcoal Foundry by David Gingery.  I plan to show my foundry tools and some castings in various stages of completion.  My foundry setup includes welded crucibles which brings us to the last project I hope to show at the faire, my home made arc welder.

Sand_Casting

Home Made Arc Welder

The final project I plan to show is my first home made arc welder.  The arc welder is made from re-wound microwave oven transformers and some standard arc welding cable, a ground clamp and electrode holder.  Various web sites detail the process of rewinding the transformers scavenged from old microwave ovens to achieve a voltage that will work for stick welding.  I plan to show my completed welder and microwave oven transformers (MOTS) in various stages of the rewinding process.  I also plan to show my steel crucibles that I made using my home made welder.

welder

See You at the Faire

Of course if you see me at the Minneapolis/St. Paul Mini Maker Faire you are also welcome to stop by and chat about my CNC software (F-Engrave, G-Code Ripper, Dmap2gcode) or ScorchCAD (OpenSCAD clone for Android)

Bottle Openers Made From 16D Common Nails

This is a collection of bottle openers that I made from 16D common nails.  Some of them work better than others but I tried to incorporate a variety of designs.  The plaque hangs on a wall and the bottle openers (nails) are held in place by magnets (neodymium magnets from hard drives) installed in cutouts in the back of the plaque.  The YouTube video embedded above shows each of the openers in action.

Here is the basic process that was used for each of the bottle openers. My son Derek (age 9) did all of the hammering for the pictures shown below. (I worked the torch and held the nail with the pliers)  The Anvil in the pictures is also Derek’s.  I have a chunk of railroad track but Derek wanted the anvil shape so he asked for an anvil for Christmas last year.  He thanked his Grandpa for the anvil before opening it (the weight gave it away).

Start with a nail (16D common):

OLYMPUS DIGITAL CAMERA

Heat the nail up, in the area to be bent, with a Propane torch:

OLYMPUS DIGITAL CAMERA

Hammer the nail (or bend with pliers) to achieve the desired bend and repeat as required:

OLYMPUS DIGITAL CAMERA

The nail can also be flattened to achieve additional features.  Derek has even flattened nails and added a twist for decoration:

OLYMPUS DIGITAL CAMERA

In the picture below the shape of the opener is complete:

OLYMPUS DIGITAL CAMERA

To increase the strength of the nail we heat it up and quench the nail in a cup of water.  This is needed to varying extents depending on the design of the bottle opener.

OLYMPUS DIGITAL CAMERA

That completes one bottle opener. Time to put it to use:

OLYMPUS DIGITAL CAMERA

The embedded video above shows closer views of the other bottle openers and includes video of each design opening a bottle.

 

Friction Welding (with a Dremel Rotary Tool)

Makey Before and After

A couple of years ago Fran posted a really interesting video demonstrating friction welding. Fran used a cheap harbor freight rotary tool and some plastic (styrene) rod from a craft store.  Her demonstration showed how strong friction welded joints are.  Friction welding has been bouncing around the back of my brain ever since.  Lately I have found a couple of applications for the friction welding technique.  Having recently purchased a fused filament 3D printer (PrintrBot Simple Metal) I have some failed PLA 3D prints laying around. I also happen to have some ABS scraps and some 3mm injection molded ABS rods from another project.  Experimenting with these materials I have found that friction welding works well for both ABS and PLA.  As part of my experimentation I repaired a failed Maker Faire Makey figure. The following video captures the process.  (I have since printed a successful Makey Robot on my Printrbot simple Metal)

After some experimenting with 1.75 mm PLA and 3 mm ABS I have come up with a few friction welding tips:

  • 3 mm filament can be used in a standard 1/8 inch collet.
  • 1.75 mm filament can be used in a 1/16 inch collet (available at most hardware stores. usually in a set of four Dremel collets )
  • You could also use a Dremel chuck to hold the filament if you have one.
  • Don’t run the Dremel at full speed.  I try to keep the speed as low as I can.  If the Dremel tool wants to jump away from the part you are welding increase the speed.  (thicker filament requires more speed)
  • Don’t let too much filament hang out of the collet.  Too muck filament will start to whip around and break off.
  • The filament will wear away quickly.  Stop to extend more filament before the extended length of  filament gets too short to grab and pull out with a pair of pliers.  Otherwise the collet nut will need to be completely removed to pull more filament out.

In addition to repairing failed prints friction welding can also be incorporated into the assembly process.  Smaller parts can be welded together to form larger structures.
Hexagons

For example I printed 20 hexagons and friction welded them together to form a truncated icosahedron (same shape as a buckyball).  In this case the finished part would have fit inside of my printers build volume but the same process could be used to create much larger structures.

Bucky Closeup 2 Bucky Closeup 1

Friction welding is a quick, strong and easy way to join plastic parts together.  The great part is that welding the parts together eliminates the need to add additional adhesives keeping the part a homogenous material.  Additional structure can even be added if needed for strength.  For extra strength prints could even include bevels for strong traditional weld joints.

The files for the truncated icosahedron can be downloaded here:

Update 12/26: Why stop there below is a quick GIF of a dodecahedron made from pentagons.

dodecahedron

 

Lithophane Christmas Bulbs

I have been playing with making spherical lithophanes with my new 3D printer (PrintrBot Simple Metal).  I wrote some Java code to read the image data and then map the image to a sphere.  The thickness of the sphere is determined by the darkness of the image.  Below are some pictures of the results.  I illuminated the bulbs by drilling a small hole in the sphere and sticking a Christmas light into the hole.  My Christmas tree lights are colored resulting in the bulbs appearing colored when illuminated.

Auggie Close

FandJ Closeup

Here is a shot of some of the bulbs without illumination.

Bulbs Group

I would like to add features to the balls to make them look more like traditional Christmas bulbs but the mesh that is produced by my Java program is so large that I have not been able to perform even the simplest Boolean operations on them.

Maker Faire Tradition – Hitch Covers

OLYMPUS DIGITAL CAMERA

When my kids and I went to Maker Faire Kansas City we made a Maker Faire themed cover for the hitch receiver on our minivan.  For Kansas City we used the themed graphics right from the Make web page.  Well this weekend we are heading to Maker Faire Milwaukee.  Unfortunatly Make does not have any site specific graphics for the Milwaukee faire.  So I made up my own graphic for the trailer hitch.  Makey the robot with a cheese hat.

MAkey Cheese Hat

Here is a picture of our first hitch cover for Maker Faire Kansas City.

hitchKC

ScorchCAD Version .04

ScorchCAD_444

After a summer break from ScorchCAD development I am back at it.  The latest version of ScorchCAD is available on Google Play.  ScorchCAD is also now available on the Amazon App Store.

Here are the highlights of the new features:

  • Hull
  • Multmatrix
  • 2D shapes (circle, square, polygon)
  • 2D boolean operations
  • Resize
  • Intersection_for
  • Nested for loops (i.e. for(i=[1:5],j=[1:5]) )
  • Polyhedron
  • norm
  • cross
  • min
  • max

Additionally there are some usability changes.  ScorchCAD will now backup the current data in the code editor when the compile button is pressed.  This data is reloaded when a new session of ScorchCAD is started.  This will allow for data recovery in the event of a crash.  Additionally ScorchCAD is now associated with *.scad, *.stl, and *.dxf file extensions.  So from a file manager you can click on one of these files and ScorchCAD will show up in the available programs to open the file.  File associativity also works for *.scad files in e-mail attachments.

 

Dmap2Gcode (image to g-code) Update

I released a new version of the image to g-code conversion program Dmap2Gcode.  The new version is 0.02, the updates to the program are listed below:

  • Added option to disable arcs in the g-code output (useful for GRBL/ShapeOko compatibility)
  • Fixed bug resulting in the selection of columns then rows having no effect
  • Added automatic scaling of all linear dimensions values when changing between units (in/mm)
  • Fixed bug when using a configuration file (“dmap2gcode.ngc”)